2 6 Ju n 20 15 Efficiency of dispersive wave generation in dual concentric core microstructured fiber

نویسندگان

  • V. Couderc
  • A. Barthélémy
  • A. Labruyère
  • B. M. Shalaby
  • A. B. Aceves
چکیده

We describe the generation of powerful dispersive waves that are observed when pumping a dual concentric core microstructured fiber by means of a sub-nanosecond laser emitting at the wavelength of 1064 nm. The presence of three zeros in the dispersion curve, their spectral separation from the pump wavelength, and the complex dynamics of solitons originated by the pump pulse break-up, all contribute to boost the amplitude of the dispersive wave on the long-wavelength side of the pump. The measured conversion efficiency towards the dispersive wave at 1548 nm is as high as 50%. Our experimental analysis of the output spectra is completed by the acquisition of the time delays of the different spectral components. Numerical simulations and an analytical perturbative analysis identify the central wavelength of the red-shifted pump solitons and the dispersion profile of the fiber as the key parameters for determining the efficiency of the dispersive wave generation process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supercontinuum Generation in Nonlinear Microstructured Fiber and Recent Advances

Supercontinuum (SC) is generated experimentally in nonlinear microstructured optical fibers (MOFs) which are designed and fabricated by stack and draw process. Effects of different drawing parameters on the MOF structures are studied and high air filling fraction is achieved by optimizing the drawing parameters. Different aspects of SC generation process is theoretically modeled and compared wi...

متن کامل

Design of a broadband highly dispersive pure silica photonic crystal fiber.

A highly dispersive dual-concentric-core pure silica photonic crystal fiber is designed with a maximum chromatic dispersion value of about -9500 ps/(nm km) around the 1.56 microm wavelength region and a full width at half-maximum (FWHM) of 55 nm. The change in the dispersion-bandwidth product as a function of period is carefully studied by using the plane wave expansion method. The coupled mode...

متن کامل

RGB generation by four-wave mixing in small-core holey fibers

We report the generation of white light comprising red, green, and blue spectral bands from a frequency-doubled fiber laser in submicron-sized cores of microstructured holey fibers. Picosecond pulses of green light are launched into a single suspended core of a silica holey fiber where energy is transferred by an efficient four-wave mixing process into a red and blue sideband whose wavelengths ...

متن کامل

Strong infrared radiation through passive dispersive wave generation and its control.

We observe strong infrared (IR) radiation as a result of passive dispersive wave generation for a realistic microstructured fiber having two zero-dispersion wavelengths. The IR radiation frequency can be suitably controlled by varying the operational wavelength, which falls in the first normal dispersion regime. The amplitude of the radiation can be significantly increased by introducing a suit...

متن کامل

Mode field diameter preserving fiber tapers.

An approach for preserving the mode field diameter (MFD) in fiber tapers is demonstrated. The approach utilizes concentric dual-core fibers, which couple light from an inner core to an outer core through a taper. Fibers with a 6 μm MFD feedthrough and a 15 μm polarization maintaining feedthrough are demonstrated experimentally. Simulations of the MFD in the tapered dual-core fibers are also pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015